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This is the final progress report for AFOSR Contract #F49620-03-1-0184, funded during
the period April-December 2003, It summarizes the work dope towards development of a
new approach to vibration control of flexible structures. The main goal of this research is
to improve control authority in structural systems through methodical stiffness variation,
specifically, using end forces, such as follower forces. .

Background

Structural control remains a topic of relevance due to the high performance demands of
certain structures, such as the revolutionary lightweight and active mirror system
proposed for space-based imaging [14]. Due to their extremely lightweight design. the
active mirror system and other highly flexible structures have a large number of flexible
modes that need to be actively controlled for satisfactory performance. Although the
traditional approach of modal control can be used to suppress vibration in these flexible
structures, their limitations pose significant challenges in control design tasks that require
a high level of precision and accuracy.

There exists a large volume of literature on the control of structures, and review papers
(Balas [3], Hyland, et al. [9], Nurre, et al. [13], for example) provide an excellent
summary of the development in the field. One of the fundamental problems in modal
control of large flexible structures is spillover (Balas [1], [2], Sesak and Coradetti [15]),
which stems from reduced-order models designed for control simplification. Although we
do not propose to directly address the problem of spillover, we are developing a control
methodology based on structural stiffness variation that has the potential to essentially
sidestep the spillover problem. Another disadvantage of traditional approaches based on
modal control is the need for estimation and control of each significant mode of the
system; this requires a large number of actuators and sensors and a high-dimensional
state space model. Our control methodology. in comparison, will provide control
authority over the significant flexible modes using a relatively small pumber of sensors
and actuators and a low-dimensional state space model. This is accomplished by variation
of the stiffness of the structure that results in modal energy redistribution, along with a



contro! design that dissipates energy from only a few specific modes in each stiffness
state. To the best of our knowledge, such an approach has not been proposed for control
- of flexible structures.

While there are many ways to vary the stiffness of a structure, we focus primarily on the
application of end forces, such as follower forces, which lends itself well to our control
design. The dynamics of beams and other structural elements have been w idely
investigated under the application of follower forces (Bolotin [4], Herrmann [5], Higuchi
and Dowell [7), Hodges, et al. [8], for example), however, structural control with
follower forces has not been previously considered.

Technical Approach

The basic idea of control design based on stiffness variation is illustrated in Fig.1. The
figure shows the control system block diagram of a dynamical system that lends itself 10
control authority enhancement through stiffness variation. The overall control system is
comprised of a stabilizing controller and a stiffness variation law, The stiffness variation
law changes the structural stiffness of the plant and modifies the control law to account
for variation in the structural parameters. The mechanism for parameter variation
involves additional hardware, but such hardware additions are justified by the benefits of
control authority improvemnent, Similar to the control law, the stiffness variation law is
based upon feedback, but its time scale of operanon will be different ﬁom that of the
controller.

Stabilizing

: Controller _I O .
. ' [——‘——— oautput
E‘i‘,@_J I [_ l Plant P
Sriffness. S
l Variation Law r"

' —I feedback —l

Figure 1: Basic concept of control using stiffness variation.

The basic idea is to modify the structural characteristics “on the fly” in a systematic
manner that allows one to access many structural modes with a minimal number of
sensors and actuators. This is accomplished by varying structural parameters such that
the mode shapes of the structure are modified. Since the modes in the different parameter
regimes do not coincide, removal of energy from a single (or a few) mode(s) in each of
the parameter regimes in fact removes energy from many modes, due to the modal
disparity. Thus, by using a conventional modal control in conjunction mth varying
modes, one can reduce vibration energy across a wide range of modes.

The test problem considered in this seed project is the straight cantilever beam with an
end force applied at the free end. The end force may be a follower force or a combination




of a follower force and an axial force. An end force changes the modal characteristics of
the beam, essentially by changing its effective stiffness. By stepping the level of the end
force between two values, one can apply modal control in each of the two states, which
allows one to access energy across all modes of the beam (at least in theory).

Under discontinuous switching, the closed-loop system will behave as a hybrid
dynamical system, consisting of a family of continuous-time sub-systems and the rules
governing the switching between them. Most of the work in this area has focused on
system stability [10] and the results indicare that slow switching with sufficient “*dwell
time" can guarantee stability when the individual sub-systems are stable [6], [11], {12].
While stability of the sub-systems should be guaranteed by control design, a loss in
performance may result from a conservative dwell time. If there is excessive loss of
performance, one can consider the design of more fast switching sequences that will
maintain stability. : :

In order to predict the performance of the proposed approach, one must be able to
quantify, or at least estimate, the modal disparity of a given structure, the effectiveness of
the modal controller, the energy input associated with the changes in stiffness, and how
these interact with damping, noise, unmodeled dynamics.

Modal Disparity: The Proof of Concept
Consider the cantilever (clamped-free) beam of length L and uniform cross section,
shown in Fig.2, which is subjected to a follower force P, If E refers to Young’s module, /

the second area moment, o the mass density and A the cross section area, then the
equation of motion, for small deflections and assumption of Euler-Bernoulli beam, is [4]

-

y,
7 eantilever beam

Fig.2: A Cantilever beam with a follower force
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where, y{x,r) is lateral deflection of the beam. Since the boundary conditions of Eq.(1)
are the same as the boundary conditions of a cantilever beam without follower force,
Eq.(1) can be discretized using normalized mode shapes of the free-end cantilever beam,
or “assumed mode shapes”, as follows,




0= {8} {8} = D)0, @

where ¢, (x) are assurned mode shapes, n is the number of modes, and §,(#) is the modal

displacement associated with the i" assumed mode shape. By plugging Eq.(2) into
Eq.(1) and projecting on to the modes, yields

{8} +([K].. +PICL, Je} =0 ©

where [K] is a diagonal positive definite matrix and [C] is a2 non-symmetric matrix. The
follower force, P, is considered to be a positive quantity. .

In this equation, modal displacements are coupled because of the assumed mode shapes.
To obtain mode shapes of the beam with end force, we consider following transformation

{8} =[T{z} , @
where columns of matrix [T] are formed using eigenvectors of [K]_+P[C] . .
Substitution of Eq.(4) into Eq.(3) results in

{g}+[Q}{z}=0 (5)

where [@]=T"'([K]+P[C]) T. In fact, [2]is a diagonal matrix consisting of the square
of the natural frequencies of the beam for P < Py, . Now, plugging the expression for
{6} from Eq.(4) into Eq.(2), yields ‘

- N
Yo ={ TT {9} = Dz )
i=)
in which {y} =[T) {¢} are the “true” mode shapes of the beam.

To see the difference between mode shapes of a cantilever beam with and without
follower force, the first four mode shapes of a cantilever beam for two cases of P =0,
and P = 75N are depicted in Fig.3. These modes-shapes correspond io an aluminum

beam. 1.25 meters long, 3 millimeters thick, and 50 millimeters wide. For this beam the

first two natural frequencies of this beam are about 9.8 and 62 rad/sec and the flutter
force is about 100 N.

Exploiting Modal Disparity in Control Design

As seen in Fig.3, end-force can significantly change the mode shapes of a beam
(especially the Jower modes). Our goal is to exploit these changes in modal frequencies
and shapes in control design with the objective of vibration suppression. In order to
demonstrate the modal disparity idea, we consider an idealized static problem wherein
the follower force switched between two values, p, and p,, and the fundamental modal




components are repeatedly removed from the system after each switch. We also assume
that energy added/removed due to work done by follower force is negligible. We will
show that such a strategy removes energy from the beam, including higher modes, in
systematic manner, and requires only to be able to contro! the fundamental mode
corresponding to each of two values of p, and p,. For the calculations we denote the

attendant normalized mode shapes for p and p, as ¢,(x) and ¥ ,(x), respectively. If
one starts with a beam deflection y,(x,f) and an end load of p,, then we can write

1st mode 2nd mode

p=TSN ——»

: ,l
c 05 1 0 0.5 4

3rd mode : 4th mode’

o 0.5 1 c 0.5 %
X X

Fig.3: Mode shapes correspondingto p =0 and p =75N
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Assuming one can remove the first mode using a simple controller, the resulting shape is
given by
E=4

¥ (JC,[) = yo(x’t)._ 61 (t)¢1 (.’C) = 2 5..({)‘% (I) . . (8)

=2 .
At this point the end-load is switched to p, and the shape is now conveniently exp ressed
as :

3 Car)= D B W, (%) | ©




It is assumed that the first mode is again removed while maintaining end force p.. This
results in the shape

Mw)Emmm) o (10)
The end ]oad is then switched back to p, where the shape can then be expressed by

uu)zymmn (11)

This completes one cycle of the process, and one is interested in how the new modal
coefficients, the 7 ,s are related to the originals, the 6,’s. This is conv eniently described

by a linear mapping »

r=[Mp | | 12y,
where I'and A are the vectors of modal coefficients.

C=[r.tpmte]  A=[8.8,..4,] | (13)

and M, the mapping marrix, can be dev eloped by a sequence of calculanons that use
modal projections for each le\ el of the end- force as follows

(o(vwﬁ@u><250w<w¢un Zﬂ@mwﬂ¢h» (14
and similarly ‘

ﬁ&)ZémwomuW (%)
Now substituting S, (z) from Eq.(15) into Eq (14), 1esults in

¥, = ZZ%MwOWwM¢@NG) (16)

Comparing this equation with Eq.(12), reveals that the structure of the mapping matrix
A7, Tt should be noticed the convergence of this process depends on the ¥x N linear
operator A7, which can be constructed as follows: the first column contains ali zeros since
the first modal coefficient was zeroed out (note that this implies that 37/ will always have
at least one zero eigenvalue). The remaining columns are filled in by the coefficient

(0.0, ()W, (.6, (0), i =12, F k=23,

L

! ( 7, g)- is the inner product of function fand g denoted by f fedx.




If all eigenvalues of M lie inside the unit circle, the process will converge, implying that
all modes consideration die out under repeated cycling and removal of the first relevant
mode. In fact rate of convergence {or divergence) is dictated by these eigenvalues.

An example using the cantilever beam for p, =0 and p, = 75N, using N =3 modes is
derived to demonstrate the methodology. In this case the matrix for the map is developed
using the results derived above {and Fig.3} and the resulted eigenvalues are shown below

#=00 A,=0502 A;=0.903

As it can be noticed the rate of convergence for higher modes is much smaller compared
to the lower modes. In other words, absolute values of the eigenvalues that correspond to
higher modes, are close to unity. Notice, in this calculation the effect of the structural
damping is not taken into the consideration. In practice, structural damping accelerates
the couvergence rate of the higher modes (to zero) in the modal disparity approach.

Preliminary Experiments

A follower force is very difficult to implement in a cantilever beam. We therefore
implemented an end force that closely resembles a follower force, as shown in Fig.4. A
Kevlar cable is used to apply the end force in the beam. The attachment at the tip of the
beam houses a pair of bearings; these bearings will allow the Kevlar cable to smoothly
wrap around the front face. The cable tension mechanism, which consists of a solenocid
and a load cell is also shown in the figure.

solenoid

> bearings

Kevlar cable in slot

Figure 4 The cantilever beam and end force mechanism.

Due to the short duration of our project (8 months) we were unable to perform extensive
experiments. Some preliminary experimental results are shown here that lend credibility
to the concept of modal disparity. In Figs.S (a) and (b). we show the vibration in the beam
after application of an end force for the two cases where the beam was initially vibrating
purely in the first mode and second mode, respectively. In both cases, it can be seen that




the beam has energy in both the first and second modes after application of the end force.
This obviates that by removing the energy from the first mode only and switching
between two different levels of the end force, it will be possible to suppress the vibration
of the beam completely.
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Fig.5. Demonstration of energy flow between modes due to modal disparity generated by
switching of end forces.
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